| $\begin{array}{\|c\|} \hline \text { Starting Address of the Group } \\ \text { Registers (Dec) } \\ \hline \end{array}$ | Starting Address of the Group Reqisters (Hex) | System Version (Release) | System Version (Build) | Group Name (Text) | Group Code (Hex) | Group Complexity (Hex) | Group Version (Hex) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 16384 | 4000 | 01 | 11 | State of Breaker | 5102 | 10 | 0100 |
| 29184 | 7200 | 01 | 11 | Three-phase Electric Protection | 7303 | 20 | 0100 |
| 20480 | 5000 | 01 | 11 | Three-phase Electric Measurement | 7103 | 30 | 0100 |
| 32768 | 8000 | 01 | 11 | Single-channel Thermal Measurement | 8100 | 10 | 0100 |

## MODBUS PROTOCOL DETAILS

| Function Code (Dec) | Exception Codes (Dec) | Data Encoding |
| :---: | :---: | :---: |
| 2 (Read Discrete Inputs) | 1,2,3 | "Big Endian" (most significant byte first |
| 4 (Read Input Registers) | 1,2,3 | Big Endian" (most significant bvte first) |

MODBUS OVER SERIAL DETAILS

| Physical Layer | Trasmission Modes | Device Addressing | Baud Rates (bit/s) | Data Bits | Data bits trasmission seailence | Parity | Stop Bits |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| standard EIA/TIA 485 (RS-485) twowire configuration | RTU | ${ }_{1}^{1} 247$ | $\left\lvert\, \begin{aligned} & \text { programmable }(1200,2400, \\ & 4800,9600,19200,38400) \end{aligned}\right.$ | 8 | $\operatorname{Least~sigificicant~bit~}_{\text {first }}$ | none | 1 |

MASTER/SLAVE COMMUNICATION TIMING

| Timer Description | Timer Value (msec) |
| :---: | :---: |
| Inter-character time-out | $<1,5$ character times |
| Response delay (from master request) | - |
| Delay Time (between two master <br> trasmissions) | - |

REFER ALSO TO:
www.modbus.org
MODBUS over serial line specification and implementation guide V1.02 MODBUS APPLICATION PROTOCOL SPECIFICATION V1.1b
NOTE:

> File and printed copies of this document are not subject to document change control.

| Register Number | Register Address (Dec) | Register Address (Hex) | $\begin{array}{\|c} \text { Dimension } \\ \text { [bit] } \end{array}$ | Description | Note | $\begin{gathered} \text { Read } \\ \text { Function } \\ \text { Codes } \end{gathered}$ | $\begin{gathered} \hline \text { Data } \\ \text { Storing } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 16385 | 16384 | 4000 | 3 | State of Breaker |  |  |  |
| 16385 | 16384 | 4000 | 1 | Open | The information reported here "self-resets" when the condition that generated it ends. | 2 |  |
| 16386 | 16385 | 4001 | 1 | Closed | The information reported here "self-resets" when the condition that generated it ends. | 2 |  |
| 16387 | 16386 | 4002 | 1 | Tripped | The information reported here "self-resets" when the condition that generated it ends. | 2 |  |
| 29185 | 29184 | 7200 | 14 | Three-phase Electric Protection |  |  |  |
| 29185 | 29184 | 7200 | 1 | Overload pre-alarm (threshold I1) | The information reported here "self-resets" when the condition that generated it ends. | 2 |  |
| 29186 | 29185 | 7201 | 1 | Overload alarm (>threshold I2) | The information reported here "self-resets" when the condition that generated it ends. | 2 |  |
| 29187 | 29186 | 7202 | 2 | RESERVED (returns "0") |  |  |  |
| 29189 | 29188 | 7204 | 1 | Over-temperature alarm (>threshold T) | The information reported here "self-resets" when the condition that generated it ends. | 2 |  |
| 29190 | 29189 | 7205 | 4 | RESERVED (returns "0") |  |  |  |
| 29194 | 29193 | 7209 | 1 | Overload P. Relay Tripped (no phase indication) | The information reported here is maintained even when the condition that generated it ends. The "restore" conditions can be (equivalent, in alternative): <br> - the detection of the device in Closed state <br> - the detection of a minimum current value on the phases. <br> The presence of Switch State Functionality is therefore NOT binding (Example: if the switch goes back to Open => the | 2 | Y |
| 29195 | 29194 | 720A | 1 | Short circuit P. Relay Tripped (no phase indication) | The information reported here is maintained even when the condition that generated it ends. The "restore" conditions can be (equivalent, in alternative): <br> - the detection of the device in Closed state <br> - the detection of a minimum current value on the phases. <br> The presence of Switch State Functionality is therefore NOT binding (Example: if the switch goes back to Open => the | 2 | Y |
| 29196 | 29195 | 720B | 1 | Device Protection Relay Tripped ("III element", no phase indications) | The information reported here is maintained even when the condition that generated it ends. The "restore" conditions can be (equivalent, in alternative): <br> - the detection of the device in Closed state <br> - the detection of a minimum current value on the phases. <br> The presence of Switch State Functionality is therefore NOT binding (Example: if the switch goes back to Open => the | 2 | Y |
| 29197 | 29196 | 720C | 1 | Earth Fault Tripped | The information reported here is maintained even when the condition that generated it ends. The "restore" conditions can be (equivalent, in alternative): <br> - the detection of the device in Closed state <br> - the detection of a minimum current value on the phases. <br> The presence of Switch State Functionality is therefore NOT binding (Example: if the switch goes back to Open => the | 2 | Y |
| 29198 | 29197 | 720D | 1 | Over-temperature P. Relay tripped | The information reported here is maintained even when the condition that generated it ends. The "restore" conditions can be (equivalent, in alternative): <br> - the detection of the device in Closed state <br> - the detection of a minimum current value on the phases. <br> The presence of Switch State Functionality is therefore NOT binding (Example: if the switch goes back to Open => the | 2 | Y |


| Register <br> Number | Register <br> Address <br> (Dec) | Register <br> Address <br> (Hex) | Dimension <br> [bit] | Description | Note | Read <br> Function <br> Codes | Write <br> Function <br> Codes | Data <br> Storing <br> (near) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | (no COILS availables) |  |  |  |  |


| Register Number | $\begin{gathered} \text { Register } \\ \text { Address } \\ \text { (Dec) } \end{gathered}$ | Register Address (Hex) | Dimension [word] | Bit Position | Description | Type | Scale | Unit | Range | Note | $\begin{gathered} \text { Read } \\ \text { Function } \\ \text { Code } \end{gathered}$ | $\begin{gathered} \hline \text { Data } \\ \text { Storing } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 16385 | 16384 | 4000 | 6 |  | State of Breaker |  |  |  |  |  |  |  |
| 16385 | 16384 | 4000 |  |  | RESERVED (returns error 84h) |  |  |  |  |  | 4 |  |
| 16386 | 16385 | 4001 | 1 |  | Operations counter |  |  |  |  | Total value, may not be zeroed | 4 | Y |
| 16387 | 16386 | 4002 | 1 |  | Maximum Number of Operations |  |  |  |  | Not configurable | 4 | Y |
| 16388 | 16387 | 4003 | 1 |  | Breaker Features - Rated Current |  | 1 | A |  |  | 4 | Y |
| 16389 | 16388 | 4004 | 1 |  | Breaker Features - Device Type and number of Poles |  |  |  |  |  | 4 | Y |
|  |  |  |  | 3 $\div 0$ | Poles: number |  |  |  | $1 \div 4$ |  | 4 | Y |
|  |  |  |  | 4 | Poles: neutral position (left(1)/right(0)) |  |  |  |  |  | 4 | Y |
|  |  |  |  | $7 \div 5$ | RESERVED (returns"0") |  |  |  |  |  | 4 | Y |
|  |  |  |  | 8 | Type of device: Isolating switch (0)/ Automatic (1) |  |  |  |  |  | 4 | Y |
|  |  |  |  | 9 | Type of device: Repulsive Breaker (0)/Non Repulsive Breaker (1) |  |  |  |  |  | 4 | Y |
| 16390 | 16389 | 4005 | 1 | 15는 | Tripping Features - Breaking capacity |  | 0,01 | kA |  |  | 4 | Y |
| 29185 | 29184 | 7200 | 249 |  | Three-phase Electric Protection |  |  |  |  |  |  |  |
| 29185 | 29184 | 7200 | 10 |  | RESERVED (returns error 84h) |  |  |  |  |  |  |  |
| 29195 | 29194 | 720A | 1 |  | Overload P. relay (total) Tripped Counter (no phase indication) |  |  |  |  |  | 4 | Y |
| 29196 | 29195 | 7208 | 1 |  | Short circuit P. relay (total) Tripped Counter (no phase indication) |  |  |  |  |  | 4 | Y |
| 29197 | 29196 | 720 C | 1 |  | RESERVED (returns "8000h") |  |  |  |  |  |  |  |
| 29198 | 29197 | 720 D | 1 |  | Device Protection Relay (total) Tripped Counter ("III element", no phase indications) |  |  |  |  |  | 4 | Y |
| 29199 | 29198 | 720 E | 1 |  | Earth Fault P. Relay (total) Tripped Counter |  |  |  |  |  | 4 | Y |
| 29200 | 29199 | 720 F | 1 |  | Over-temperature P. Relay (total) Tripped Counter |  |  |  |  |  | 4 | Y |
|  |  |  |  |  | Last Release data Buffer (Last Trip) |  |  |  |  |  | 4 |  |
| 29201 | 29200 | 7210 | 1 |  | Last Release data Buffer (Last Trip): chronology, "year" (MSB) e "month" (LSB) |  |  |  |  |  |  |  |
| 29202 | 29201 | 7211 | 1 |  | Last Release data Buffer (Last Trip): chronology, "day" (MSB) e "hou |  |  |  |  |  |  |  |
| 29203 | 29202 | 7212 | 1 |  | Last Release data Buffer (Last Trip): chronology, "minutes" (MSB) e | ds" (LSB) |  |  |  |  |  |  |
| 29204 | 29203 | 7213 | 2 |  | Last Release data Buffer (Last Trip): Interrupted current or temperature |  |  | mA, ${ }^{\circ} \mathrm{C}$ |  | Expressed in "numeric coding" | 4 |  |
| 29206 | 29205 | 7215 | 1 |  | Protection settings detail which cause trip: Levels |  |  | A/\% |  | Expressed in "numeric coding" | 4 | Y |
| 29207 | 29206 | 7216 | 1 |  | Protection settings detail which cause trip: Times |  |  | msec |  | Expressed in "numeric coding" | 4 | Y |
| 29208 | 29207 | 7217 | 1 |  | Protection settings detail which cause trip: Options |  |  |  |  |  |  | Y |
|  |  |  |  | 0 | disabled(1)/active(0) |  |  |  |  |  | 4 | Y |
|  |  |  |  | 1 | absolute value(1)/\%In(0) |  |  |  |  |  | 4 | Y |
|  |  |  |  | $4 \div 2$ | I2t=k MEM OFF(001)/I2t=k MEM ON(000) |  |  |  |  | it's not present for device protection | 4 | Y |
|  |  |  |  | 7-5 | RESERVED (returns "0") |  |  |  |  |  | 4 | Y |
|  |  |  |  | 15٪8 | point of work, Ir multiple |  |  |  |  |  | 4 | Y |
| 29209 | 29208 | 7218 | 1 |  | Last Release data Buffer (Last Trip): "Tripped" type reading only bit reply - part I |  |  |  |  |  |  |  |
|  |  |  |  | 0 | Overload P. Relay Tripped Reply (no phase indication) |  |  |  |  |  | 4 |  |
|  |  |  |  | 1 | Short-circuit P. Relay Tripped Reply (no phase indication) |  |  |  |  |  | 4 |  |
|  |  |  |  | 2 | Device Protection Relay Tripped Reply ("III element", no phase indication) |  |  |  |  |  | 4 |  |
|  |  |  |  | 3 | Earth Fault P. Relay Tripped Reply |  |  |  |  |  | 4 |  |
|  |  |  |  | 4 | Over-temperature P. Relay Tripped Reply |  |  |  |  |  | 4 |  |
|  |  |  |  | 5 | Overload P. Relay Tripped Reply phase 1 |  |  |  |  |  |  |  |
|  |  |  |  | 6 | Overload P. Relay Tripped Reply phase 2 |  |  |  |  |  |  |  |
|  |  |  |  | 7 | Overload P. Relay Tripped Reply phase 3 |  |  |  |  |  |  |  |
|  |  |  |  | 8 | Overload P. Relay Tripped Reply N |  |  |  |  |  |  |  |
|  |  |  |  | 9 | Short circuit Instantaneus P. Relay Tripped Reply phase 1 |  |  |  |  |  |  |  |
|  |  |  |  | 10 | Short circuit Instantaneus P. Relay Tripped Reply yhase 2 |  |  |  |  |  |  |  |
|  |  |  |  | 12 | Short circuit Instantaneus P. Relay Tripped Reply N |  |  |  |  |  |  |  |
|  |  |  |  | 13 | Short circuit which may be delayed P. Relay Tripped Reply phase 1 |  |  |  |  |  |  |  |
|  |  |  |  | 14 | Short circuit which may be delayed P. Relay Tripped which Reply phase 2 |  |  |  |  |  |  |  |
|  |  |  |  | 15 | Short circuit which may be delayed P. Relay Tripped Reply phase 3 |  |  |  |  |  |  |  |
| 29210 | 29209 | 7219 | 1 |  | Last Release data Buffer (Last Trip): "Tripped" type reading only bit renly - part II |  |  |  |  |  |  |  |
|  |  |  |  | 0 | Short circuit P. Relay Tripped which may be delayed Reply N |  |  |  |  |  |  |  |
|  |  |  |  | 1 | Device Protection Relay Tripped Reply phase 1 ("III element") |  |  |  |  |  |  |  |
|  |  |  |  | 2 | Device Protection Relay Tripped Reply phase 2 ("III element") |  |  |  |  |  |  |  |
|  |  |  |  | 3 | Device Protection Relay Tripped Reply phase 3 ("III element") |  |  |  |  |  |  |  |
|  |  |  |  | 4 | Device Protection Relay Tripped Reply N("III element") |  |  |  |  |  |  |  |
|  |  |  |  | 5 | Relay Tripped in mode "Main Setting" |  |  |  |  |  |  |  |
|  |  |  |  | $\frac{6}{7}$ | Relay Tripped in mode "Dual Settina" |  |  |  |  |  |  |  |
|  |  |  |  | 8 | Short circuit which may be delayed Relay Tripped in mode "İt=k" |  |  |  |  |  |  |  |

ᄂ7 legrand ${ }^{\text {² }}$

|  |  |  |  | 9 | Short circuit which may be delayed Relay Tripped in mode "Logical Selectivity" (with delav Tm) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 10 | Short circuit which may be delayed Relay Tripped in mode "Logical Selectivity" (with delav SEL = Hiah) |  |  |  |  |  |  |
|  |  |  |  | 11 | Earth Fault P. Relay Tripped in mode "I ${ }^{2} \mathrm{t}=\mathrm{k}^{\prime \prime}$ |  |  |  |  |  |  |
|  |  |  |  | $15 \div 12$ | RESERVED (returns "0") |  |  |  |  |  |  |
| 29211 | 29210 | 721A | 10 |  | Last Release data Buffer 1 |  |  |  | See details in Last Release data Buffer (Last Trio) |  |  |
| 29221 | 29220 | 7224 | 10 |  | Last Release data Buffer 2 |  |  |  | See details in Last Release data Buffer (Last Trio) |  |  |
| 29231 | 29230 | 722 E | 10 |  | Last Release data Buffer 3 |  |  |  | See details in Last Release data Buffer (Last Trio) |  |  |
| 29241 | 29240 | 7238 | 10 |  | Last Release data Buffer 4 |  |  |  | See details in Last Release data Buffer (Last Trio) |  |  |
| 29251 | 29250 | 7242 | 10 |  | Last Release data Buffer 5 |  |  |  | See details in Last Release data Buffer (Last Trip) |  |  |
| 29261 | 29260 | 724C | 10 |  | Last Release data Buffer 6 |  |  |  | See details in Last Release data Buffer (Last Trio) |  |  |
| 29271 | 29270 | 7256 | 10 |  | Last Release data Buffer 7 |  |  |  | See details in Last Release data Buffer (Last Trio) |  |  |
| 29281 | 29280 | 7260 | 10 |  | Last Release data Buffer 8 |  |  |  | See details in Last Release data Buffer (Last Trio) |  |  |
| 29291 | 29290 | 726A | 10 |  | Last Release data Buffer 9 |  |  |  | See details in Last Release data Buffer (Last Trio) |  |  |
| 29301 | 29300 | 7274 | 10 |  | Last Release data Buffer 10 |  |  |  | See details in Last Release data Buffer (Last Trio) |  |  |
| 29311 | 29310 | 727 E | 100 |  | RESERVED (returns "8000h") |  |  |  |  |  |  |
| 29411 | 29410 | 72E2 | 1 |  | G1 ("main setting") - overload: level |  | [A]/[\%] |  |  |  |  |
| 29412 | 29411 | 72E3 | 1 |  | G1- overload: times |  | [msec] |  |  |  |  |
| 29413 | 29412 | 72E4 | 1 |  | G1- overload: options |  |  |  |  |  |  |
| 29414 | 29413 | 72E5 | $\frac{2}{1}$ |  | G1- short circuit which may be delayed: levels |  |  | ${ }_{\text {A }}^{\text {Asec }}$ | Expressed in "numeric coding" | 4 | Y |
| 29417 | 29416 | 72E8 | 1 |  | G1 - short circuit which may be delayed: options |  |  |  |  | 4 | Y |
|  |  |  |  | 0 | Bit0=disabled(1)/active(0) |  |  |  |  | 4 | Y |
|  |  |  |  | 1 | absolute value(1)//\%Ir(0) |  |  |  |  | 4 | Y |
|  |  |  |  | $4 \div 2$ | curve $\mathrm{t}=\mathrm{k}(001) / \mathrm{I} 2 \mathrm{t}=\mathrm{k}(000)$ |  |  |  |  | 4 | Y |
|  |  |  |  | 7 75 | RESERVED (returns " 0 ") |  |  |  |  | 4 | Y |
|  |  |  |  | 15:8 | Point of work for I2t curve, multiple of Ir) |  |  |  |  | 4 | Y |
| 29418 | 29417 | 72E9 | 4 |  | RESERVED (returns "80000000h", 80000 ", "8000") |  |  | A/\% | Expressed in "numeric codina" | 4 | Y |
| 29422 | 29421 | 72ED | 2 |  | G1-device protection: levels |  |  | msec | Expressed in "numeric coding | 4 | Y |
| 29425 | 29424 | 72F0 | 1 |  | G1 - device protection: options |  |  |  |  | 4 | Y |
|  |  |  |  | 0 | disabled(1)/active(0) |  |  |  |  | 4 | Y |
|  |  |  |  | 1 | absolute value(1)/\%/In(0) |  |  |  |  | 4 | Y |
|  |  |  |  | $15 \div 2$ | RESERVED (returns "0") |  |  |  |  | 4 | Y |
| 29426 | 29425 | 72 F 1 | 1 |  | G1 - earth leakage protection: levels |  |  | A/\% | Expressed in "numeric coding" | 4 | Y |
| 29427 | 29426 | 72 F 2 | 1 |  | G1- earth leakage protection: times |  |  | msec | Expressed in "numeric coding" | 4 | Y |
| 29428 | 29427 | 72F3 | 1 |  | G1 - earth leakage protection: options |  |  |  |  | 4 | Y |
|  |  |  |  | 0 | Bit0=disabled(1)/active(0) |  |  |  |  | 4 | Y |
|  |  |  |  | 1 | absolute value(1)/\%/Ir(0) |  |  |  |  | 4 | Y |
|  |  |  |  | $4 \div 2$ | curve $\mathrm{t}=\mathrm{k}(001) / \mathrm{I} 2 \mathrm{t}=\mathrm{k}(000)$ |  |  |  |  | 4 | Y |
|  |  |  |  | $7 \div 5$ | RESERVED (returns "0") |  |  |  |  | 4 | Y |
| 29429 | 29428 | 72 F4 |  | 15 $\div 8$ | Point of work for I2t curve, multiple of Ir) |  |  | A\% | Expressed in "numeric codin" | 4 | Y |
| 29430 | 29429 | 72F5 | 1 |  | G1- 隹utral protection: Ievels |  |  | ${ }_{\text {msec }}$ | Expressed in "numeric coding | 4 | Y |
| 29431 | 29430 | 72F6 | 1 |  | G1 - neutral protection: options |  |  |  |  | 4 | Y |
|  |  |  |  | 0 | disabled(1)/active(0) |  |  |  |  | 4 | Y |
|  |  |  |  | $15 \div 1$ | RESERVED (returns "0") |  |  |  |  | 4 | Y |
| $\frac{29427}{29428}$ | 29426 | 72F2 | 1 |  | $\frac{\text { G1 - over-temperature protection: levels }}{\text { G1- over-temperature protection } \text { t } \text { times }}$ |  |  | ${ }_{\text {msec }}{ }^{\circ}$ | Expressed in "numeric coding" | 4 | Y |
| 20481 | 20480 | 5000 | 50 |  | Three-phase Electric Measurement |  |  |  |  |  |  |
| 20481 | 20480 | 5000 | 1 |  | Phase 1 Current Value (R) | unsigned integer |  | A | $\left\lvert\, \begin{aligned} & \text { Expressed on "numeric coding"; without mark } \\ & \text { (fixed more significant bit }=0 \text { ) }\end{aligned}\right.$ | 4 |  |
| 20482 | 20481 | 5001 | 1 |  | Phase 2 Current Value (S) | unsigned integer |  | A | Expressed on "numeric coaing"; without mark (fixed more significant bit $=0$ ) | 4 |  |
| 20483 | 20482 | 5002 | 1 |  | Phase 3 Current Value ( $T$ ) | unsigned integer |  | A | Expressed on "numeric coding"; without mark (fixed more significant bit $=0$ ) | 4 |  |
| 20484 | 20483 | 5003 | 1 |  | Neutral Current Value | unsigned integer |  | A | Expressed on "numeric coding"; without mark (fixed more significant bit $=0$ ) | 4 |  |
| 20485 | 20484 | 5004 | 1 |  | Earth Current Value | unsigned integer |  | A | Expressed on "numeric coding"; without mark (fixed more significant bit = 0) | 4 |  |
| 20486 | 20485 | 5005 | 9 |  | RESERVED (all return "8000h") |  |  |  |  |  |  |
| 20495 | 20494 | 500 E | 1 |  | 1-N Voltage | unsigned integer |  | V | Expressed on "numeric coalng"; without mark (fixed more significant bit $=0$ ) | 4 |  |
| 20496 | 20495 | 500 F | 1 |  | 2-N Voltage | unsigned integer |  | V | Expressed on "numeric coding"; without mark (fixed more significant bit $=0$ ) | 4 |  |

$\boxed{7}$ legrand ${ }^{\circ}$

| 20497 | 20496 | 5010 | 1 | 3-N Voltage | unsigned integer |  | V | Expressed on "numeric coding"; without mark (fixed more significant bit $=0$ ) | 4 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20498 | 20497 | 5011 | 1 | 1-2 Voltage | unsigned integer |  | v | Expressed on "numeric coding"; without mark (fixed more significant bit $=0$ ) | 4 |  |
| 20499 | 20498 | 5012 | 1 | 1-3 Voltage | unsigned integer |  | v | Expressed on "numeric coding"; without mark (fixed more significant bit = 0) | 4 |  |
| 20500 | 20499 | 5013 | 1 | 2-3 Voltage | unsigned integer |  | v | Expressed on "numeric coding"; without mark (fixed more significant bit $=0$ ) | 4 |  |
| 20501 | 20500 | 5014 | 12 | RESERVED (all return "8000h") |  |  |  |  |  |  |
| 20513 | 20512 | 5020 | 1 | Phase 1 (R) THD Current vs. fundamental | unsigned integer |  | \% | Expressed on "numeric coding"; without mark (fixed more significant bit $=0$ ) | 4 |  |
| 20514 | 20513 | 5021 | 1 | Phase 2 (S) THD Current vs. fundamental | unsigned integer |  | \% | Expressed on "numeric coarng"; without mark (fixed more significant bit $=0$ ) | 4 |  |
| 20515 | 20514 | 5022 | 1 | Phase 3 (T) THD Current vs. fundamental | unsigned integer |  | \% | Expressed on "numerIc coarng"; without mark (fixed more significant bit $=0$ ) | 4 |  |
| 20516 | 20515 | 5023 | 1 | Neutral Current THD vs. fundamental | unsigned integer |  | \% | EXpressed on "numerIc coaing"; without mark (fixed more significant bit $=0$ ) | 4 |  |
| 20517 | 20516 | 5024 | 1 | 1-N Voltage THD vs. fundamental | unsigned integer |  | \% | Expressed on "numeric coding"; without mark (fixed more significant bit = 0) | 4 |  |
| 20518 | 20517 | 5025 | 1 | 2-N Voltage THD vs. fundamental | unsigned integer |  | \% | Expressed on "numeric coarng"; without mark (fixed more significant bit $=0$ ) | 4 |  |
| 20519 | 20518 | 5026 | 1 | 3-N Voltage THD vs. fundamental | unsigned integer |  | \% | Expressed on "numeric coding"; without mark (fixed more significant bit $=0$ ) | 4 |  |
| 20520 | 20519 | 5027 | 3 | RESERVED (all return "8000h") |  |  |  |  |  |  |
| 20523 | 20522 | 502A | 1 | Three-phase Active Power | signed integer |  | kW | Expressed In "numeric coding"; with mark (more significant bit = mark) | 4 |  |
| 20524 | 20523 | 502B | 1 | Three-phase reactive power | signed integer |  | kvar | $\begin{aligned} & \text { Expressed in "numeric coding"; with mark (more } \\ & \text { significant bit = mark) } \end{aligned}$ | 4 |  |
| 20525 | 20524 | 502 C | 3 | RESERVED (all return "8000h") |  |  |  |  |  |  |
| 20528 | 20527 | 502F | 1 | Three-phase Power Factor (PF) | signed integer | 0,01 |  | Expressed In "numeric coding"; with mark (more significant bit = mark) | 4 |  |
| 20529 | 20528 | 5030 | 1 | RESERVED (returns "8000 ${ }^{\text {") }}$ |  |  |  |  |  |  |
| 20530 | 20529 | 5031 | 1 | Three-phase frequency | signed integer |  | Hz | Expressed in "numeric coalng"; with mark (more significant bit $=$ mark ) | 4 |  |
| 20531 | 20530 | 5032 | 2 | RESERVED (returns "80000000h") |  |  |  |  |  |  |
| 20533 | 20532 | 5034 | 2 | Positive Three-phase Active Energy | unsigned integer |  | kWh | Expressed on "numeric coaing"; without mark (fixed more significant bit = 0) | 4 | Y |
| 20535 | 20534 | 5036 | 2 | Negative Three-phase Active Energy | unsigned integer |  | kWh | Expressed on "numeric coaing"; without mark (fixed more significant bit $=0$ ) | 4 | Y |
| 20537 | 20536 | 5038 | 2 | RESERVED (returns "80000000h") |  |  |  |  |  |  |
| 20539 | 20538 | 503A | 2 | Positive Three-phase Reactive Energy | unsigned integer |  | kvarh | Expressed on "numeric coaing"; (fixed more significant bit $=0$ ) | 4 | Y |
| 20541 | 20540 | 503C | 2 | Negative Three-phase Reactive Energy | unsigned integer |  | kvarh | Expressed on "numeric coaling"; without mark (fixed more significant bit $=0$ ) | 4 | Y |
| $\begin{array}{r}32769 \\ 32769 \\ \hline\end{array}$ | 32768 | 8000 | 1 | Single-channel Thermal Measurement | signed integer |  | ${ }^{\circ} \mathrm{C}$ | Expressed in "numeric coding" | 4 |  |



