Product Environmental Profile

Sensor for infrared motion detection RP-C-EXT-MS-BLE

General information

Representative product	Sensor for infrared motion detection RP-C-EXT-MS-BLE - SXWREMSBLE10001

Constituent materials

| Plastics | 44.8% |
| :--- | :--- | :--- |
| Metals | 2.5% |
| Others | 52.6% |

Substance assessment

Products of this range are designed in conformity with the requirements of the RoHS directive (European Directive 2011/65/EU of 8 June 2011) and do not contain, or only contain in the authorised proportions, lead, mercury, cadmium, hexavalent chromium or flame retardants (polybrominated biphenyls - PBB, polybrominated diphenyl ethers - PBDE) as mentioned in the Directive
As the products of the range are designed in accordance with the RoHS Directive (European Directive 2002/95/EC of 27 January 2003), they can be incorporated without any restriction in an assembly or an installation subject to this Directive.
Details of ROHS and REACH substances information are available on the Schneider-Electric Green Premium website
http://www2.schneider-electric.com/sites/corporate/en/products-services/green-premium/green-premium.page

(4in) Additional environmental information

The Sensor for infrared motion detection RP-C-EXT-MS-BLE presents the following relevent environmental aspects

Manufacturing	Manufactured at a Schneider Electric production site ISO14001 certified
Distribution	Weight and volume of the packaging optimized, based on the European Union's packaging directive Packaging weight is 46 g , consisting of cardboard (75%), paper (25%) Packaging recycled materials is 60% of total packaging mass. Product distribution optimised by setting up local distribution centres
Installation	SXWREMSBLE10001 does not require any installation operations.
Use	The product does not require special maintenance operations.
End of life	End of life optimized to decrease the amount of waste and allow recovery of the product components and materials This product contains electronic cards $(27 \mathrm{~g})$ that should be separated from the stream of waste so as to optimize end-of-life treatment.
	The location of these components and other recommendations are given in the End of Life Instruction document which is available on the Schneider-Electric Green Premium website http://www2.schneider-electric.com/sites/corporate/en/products-services/green-premium/green-premium.page
	Recyclability potential: $\quad 75 \% \quad$Based on "ECO'DEEE recyclability and recoverability calculation method" (version V1, 20 Sep. 2008 presented to the French Agency for Environment and Energy Management: ADEME).

Environmental impacts

Reference life time	10
Product category	O
Installation elements	Th
Use scenario	PS
Geographical representativeness	Fr
Technological representativeness	Th lu sig

10 years
Other equipments - Active product
The transport of packaging for disposal, and the disposal are accounted for in the insaltation phase. PSR0005, sec. 3.13 Other Equipment, Active Products Category 2-100\% active mode, .3W over 10 years France

The RP-C-EXT-MS-BLE multi-sensor is used for infrared motion detection, the measurement of two luminosity levels in two independent zones, and the emission and receipt of Bluetooth Low Energy (BLE) signals from mobile devices.

Energy model used

Manufacturing	Installation	Use	End of life
Energy model used: France	Electricity grid mix; AC; consumption mix, at consumer; $<1 \mathrm{kV} ; \mathrm{EU}-27$	Electricity grid mix; AC; consumption mix, at consumer; $<1 \mathrm{kV} ;$ EU-27, US, CN	AC; consumption mix, at consumer; $<1 \mathrm{kV} ;$

Compulsory indicators		Sensor for infrared motion detection RP-C-EXT-MS-BLE - SXWREMSBLE10001					
Impact indicators	Unit	Total	Manufacturing	Distribution	Installation	Use	End of Life
Contribution to mineral resources depletion	kg Sb eq	$2.26 \mathrm{E}-04$	$2.25 \mathrm{E}-04$	0*	0*	$9.25 \mathrm{E}-07$	0*
Contribution to the soil and water acidification	$\mathrm{kg} \mathrm{SO}_{2}$ eq	5.13E-02	$3.54 \mathrm{E}-03$	7.84E-05	$1.04 \mathrm{E}-05$	$4.76 \mathrm{E}-02$	4.03E-05
Contribution to water eutrophication	$\mathrm{kg} \mathrm{PO}_{4}{ }^{\text {3- }}$ eq	$4.65 \mathrm{E}-03$	$7.88 \mathrm{E}-04$	$1.80 \mathrm{E}-05$	$2.52 \mathrm{E}-06$	3.82E-03	$1.84 \mathrm{E}-05$
Contribution to global warming	$\mathrm{kg} \mathrm{CO}_{2}$ eq	$1.70 \mathrm{E}+01$	$2.08 \mathrm{E}+00$	$1.72 \mathrm{E}-02$	$2.49 \mathrm{E}-03$	$1.48 \mathrm{E}+01$	$5.50 \mathrm{E}-02$
Contribution to ozone layer depletion	$\begin{aligned} & \mathrm{kg} \mathrm{CFC11} \\ & \text { eq } \end{aligned}$	$9.55 \mathrm{E}-07$	2.27E-07	0*	0*	7.25E-07	1.86E-09
Contribution to photochemical oxidation	kg C2 H_{4} eq	$3.50 \mathrm{E}-03$	$5.05 \mathrm{E}-04$	$5.59 \mathrm{E}-06$	7.75E-07	$2.98 \mathrm{E}-03$	$3.50 \mathrm{E}-06$
Resources use	Unit	Total	Manufacturing	Distribution	Installation	Use	End of Life
Net use of freshwater	m3	$3.74 \mathrm{E}+01$	$4.81 \mathrm{E}-02$	0*	0*	$3.74 \mathrm{E}+01$	0*
Total Primary Energy	MJ	$3.04 \mathrm{E}+02$	$2.97 \mathrm{E}+01$	2.43E-01	$3.25 \mathrm{E}-02$	$2.74 \mathrm{E}+02$	$1.75 \mathrm{E}-01$

Optional indicators		Sensor for infrared motion detection RP-C-EXT-MS-BLE - SXWREMSBLE10001					
Impact indicators	Unit	Total	Manufacturing	Distribution	Installation	Use	End of Life
Contribution to fossil resources depletion	MJ	$2.01 \mathrm{E}+02$	$2.14 \mathrm{E}+01$	$2.41 \mathrm{E}-01$	$3.22 \mathrm{E}-02$	$1.79 \mathrm{E}+02$	$1.43 \mathrm{E}-01$
Contribution to air pollution	m^{3}	$1.08 \mathrm{E}+03$	$1.99 \mathrm{E}+02$	$7.30 \mathrm{E}-01$	0*	$8.75 \mathrm{E}+02$	$1.28 \mathrm{E}+00$
Contribution to water pollution	m^{3}	$8.91 \mathrm{E}+02$	$2.38 \mathrm{E}+02$	$2.82 \mathrm{E}+00$	$3.77 \mathrm{E}-01$	$6.48 \mathrm{E}+02$	$2.50 \mathrm{E}+00$
Resources use	Unit	Total	Manufacturing	Distribution	Installation	Use	End of Life
Use of secondary material	kg	4.57E-04	$4.57 \mathrm{E}-04$	0*	0 *	0 *	0 *
Total use of renewable primary energy resources	MJ	$3.08 \mathrm{E}+01$	$9.30 \mathrm{E}-01$	0*	0*	$2.99 \mathrm{E}+01$	0 *
Total use of non-renewable primary energy resources	MJ	$2.73 \mathrm{E}+02$	$2.88 \mathrm{E}+01$	$2.42 \mathrm{E}-01$	3.24E-02	$2.44 \mathrm{E}+02$	$1.75 \mathrm{E}-01$
Use of renewable primary energy excluding renewable primary energy used as raw material	MJ	$2.99 \mathrm{E}+01$	4.69E-02	0*	0*	$2.99 \mathrm{E}+01$	0*
Use of renewable primary energy resources used as raw material	MJ	8.83E-01	8.83E-01	0*	0*	0*	$0 *$
Use of non renewable primary energy excluding non renewable primary energy used as raw material	MJ	$2.71 \mathrm{E}+02$	$2.60 \mathrm{E}+01$	$2.42 \mathrm{E}-01$	$3.24 \mathrm{E}-02$	$2.44 \mathrm{E}+02$	$1.75 \mathrm{E}-01$
Use of non renewable primary energy resources used as raw material	MJ	$2.79 \mathrm{E}+00$	$2.79 \mathrm{E}+00$	0*	0*	0*	0*
Use of non renewable secondary fuels	MJ	$0.00 \mathrm{E}+00$	0*	0*	0*	0*	0*
Use of renewable secondary fuels	MJ	$0.00 \mathrm{E}+00$	0 *	0*	0*	0*	0 *
Waste categories	Unit	Total	Manufacturing	Distribution	Installation	Use	End of Life
Hazardous waste disposed	kg	$1.15 \mathrm{E}+00$	$8.10 \mathrm{E}-01$	0 *	0 *	1.40E-01	2.02E-01
Non hazardous waste disposed	kg	4.07E+01	$1.53 \mathrm{E}+00$	0*	0*	$3.92 \mathrm{E}+01$	0*
Radioactive waste disposed	kg	$2.61 \mathrm{E}-02$	$4.31 \mathrm{E}-04$	0*	0*	$2.57 \mathrm{E}-02$	0 *
Other environmental information	Unit	Total	Manufacturing	Distribution	Installation	Use	End of Life
Materials for recycling	kg	$6.56 \mathrm{E}-02$	1.12E-02	0 *	4.57E-02	0*	8.73E-03
Components for reuse	kg	$0.00 \mathrm{E}+00$	0 *	0 *	0*	0*	0*
Materials for energy recovery	kg	$1.44 \mathrm{E}-02$	0 *	0 *	0*	0*	$1.44 \mathrm{E}-02$
Exported Energy	MJ	$1.45 \mathrm{E}-04$	1.37E-05	0*	$1.32 \mathrm{E}-04$	0*	0*

* represents less than 0.01% of the total life cycle of the reference flow

Life cycle assessment performed with EIME version EIME v5.8.1, database version 2016-11 in compliance with ISO14044.
The use phase is the life cycle phase which has the greatest impact on the majority of environmental indicators (based on compulsory indicators).

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Schneider Electric Industries SAS

Country Customer Care Center
http://www.schneider-electric.com/contact

35, rue Joseph Monier
CS 30323
F- 92506 Rueil Malmaison Cedex
RCS Nanterre 954503439
Capital social $896313776 €$
www.schneider-electric.com
Published by Schneider Electric
SCHN-00452-V01.01-EN

