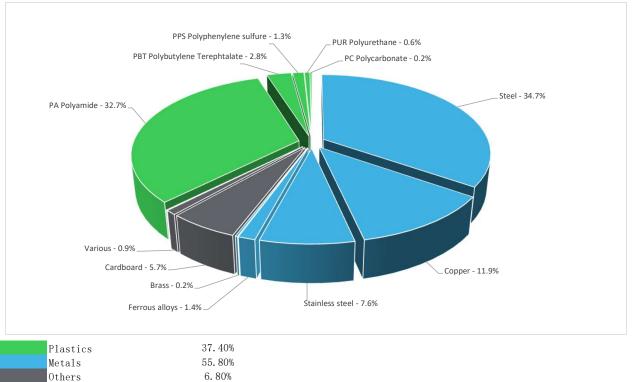
Product Environmental Profile

TeSys Deca,3P,48-65A Motor circuit breaker

TeSys Deca


General information

Reference product	GV3P65
Description of the product	The main purpose of the product is to protect three-phase motors, the cables, the people, against short circuits and overloads.
Description of the range	The range product report includes : rated current:13A-80A,TeSys Deca Motor circuit breaker Frame3 ,the representative product used for analysis is GV3P 3P 65A
	The environmental impacts of this reference product are representative of the impacts of the other products of the range which are developed with a similar technology.
Functional unit	Protect during 20 years the installation against overloads and short-circuits in circuit with 690V and 65A. This protection is ensured in accordance with the following parameters: - Number of poles 3P - Rated breaking capacity 6KA

Constituent materials

Reference product mass

1020.56g including the product, its packaging and additional elements and accessories

Substance assessment

Details of ROHS and REACH substances information are available on the Schneider-Electric Green Premium website https://www.se.com/ww/en/work/support/green-premium/

(19) Additional environmental information

End Of Life

Recyclability potential:

58%

Recyclability rate has been calculated based on REEECY'LAB tool developed by Ecosystem, for components/materials not covered by the tool, data from the "ECO'DEEE recyclability and recoverability calculation method" was taken. If no data was found a conservative assumption was used (0% recyclability).

Tenvironmental impacts

Reference service life time	20 years					
Product category	Circuit-breakers					
Installation elements	Ref GV3P65 does not require any installation operations.					
Use scenario	Load rate: 50% of In Use time rate: 30% of RLT					
Technological representativeness	The Modules of Technologies such as material production, manufacturing process and transport technology used in this PEP analysis (LCA-EIME in this case) are Similar and representative of the actual type of technologies used to make the product in production					
Geographical representativeness	France					
	[A1 - A3]	[A5]	[B6]	[C1 - C4]		
Energy model used	Electricity Mix; Production mix; Low voltage; FR	Electricity Mix; Production mix; Low voltage; FR	Electricity Mix; Production mix; Low voltage; FR	Electricity Mix; Production mix; Low voltage; FR		

Detailed results, including all the optional indicators mentioned in PCRed4, and the split of the Use Phase (B1 to B7), are available in the LCA report and on demand in a digital format - Country Customer Care Center - http://www.schneider-electric.com/contact

Mandatory Indicators			TeSys Deca,3P,48-65A Motor circuit breaker - GV3P65					
	Unit	Total	Manufacturing	Distribution	Installation	Use	End of Life	Benefits
Impact indicators	Unit	Total	[A1 - A3]	[A4]	[A5]	[B1 - B7]	[C1 - C4]	[D]
Contribution to climate change	kg CO2 eq	2.98E+01	5.65E+00	2.94E-01	1.10E-01	2.11E+01	2.65E+00	-4.11E+01
Contribution to climate change-fossil	kg CO2 eq	2.96E+01	5.60E+00	2.94E-01	1.05E-01	2.10E+01	2.63E+00	-4.09E+01
Contribution to climate change-biogenic	kg CO2 eq	1.41E-01	5.62E-02	0*	4.90E-03	5.43E-02	2.54E-02	-1.63E-01
Contribution to climate change-land use and land use change	kg CO2 eq	4.23E-07	0*	0*	0*	0*	4.23E-07	0.00E+00
Contribution to ozone depletion	kg CFC-11 eq	1.26E-06	6.61E-07	2.60E-07	7.29E-09	3.10E-07	2.11E-08	-6.18E-06
Contribution to acidification	mol H+ eq	1.96E-01	6.45E-02	1.28E-03	4.37E-04	1.22E-01	8.10E-03	-2.98E-01
Contribution to eutrophication, freshwater	kg (PO4)³¯ eq	1.96E-03	5.76E-05	0*	7.96E-07	1.00E-03	9.02E-04	-6.33E-05
Contribution to eutrophication marine	kg N eq	2.71E-02	8.25E-03	5.87E-04	1.16E-04	1.68E-02	1.39E-03	-2.41E-02
Contribution to eutrophication, terrestrial	mol N eq	3.54E-01	8.89E-02	6.37E-03	8.74E-04	2.41E-01	1.63E-02	-2.81E-01
Contribution to photochemical ozone formation - human health	kg COVNM eq	8.47E-02	2.78E-02	2.09E-03	2.33E-04	4.97E-02	4.92E-03	-1.01E-01
Contribution to resource use, minerals and metals	kg Sb eq	3.23E-02	3.23E-02	0*	0*	9.97E-06	2.54E-05	-1.30E-02
Contribution to resource use, fossils	MJ	4.25E+03	1.02E+02	3.57E+00	1.15E+00	4.05E+03	9.86E+01	-9.31E+02
Contribution to water use	m3 eq	5.51E+00	2.67E+00	1.49E-02	4.71E-02	1.53E+00	1.25E+00	-1.95E+01

Additional indicators for the French regulation are available as well

Inventory flows Indicators			TeSys Deca,3P,48-65A Motor circuit breaker - GV3P65					
Inventory flows	Unit	Total	Manufact.	Distribution	Installation	Use	End of Life	Benefits
			[A1 - A3]	[A4]	[A5]	[B1 - B7]	[C1 - C4]	[D]
Contribution to use of renewable primary energy excluding enewable primary energy used as raw material	MJ	3.76E+02	9.70E-01	0*	8.23E-02	3.74E+02	6.15E-01	-8.13E+0
Contribution to use of renewable primary energy resources sed as raw material	MJ	1.20E+00	1.20E+00	0*	0*	0*	0*	-1.09E+0
contribution to total use of renewable primary energy esources	MJ	3.77E+02	2.17E+00	0*	8.23E-02	3.74E+02	6.15E-01	-9.22E+0
Contribution to use of non renewable primary energy xcluding non renewable primary energy used as raw material	MJ	4.24E+03	9.39E+01	3.57E+00	1.15E+00	4.05E+03	9.86E+01	-9.31E+0
Contribution to use of non renewable primary energy esources used as raw material	MJ	8.33E+00	8.33E+00	0*	0*	0*	0*	0.00E+00
contribution to total use of non-renewable primary energy esources	MJ	4.25E+03	1.02E+02	3.57E+00	1.15E+00	4.05E+03	9.86E+01	-9.31E+0
contribution to use of secondary material	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+0
Contribution to use of renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to use of non renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+0
Contribution to net use of freshwater	m³	1.28E-01	6.21E-02	3.48E-04	1.10E-03	3.55E-02	2.91E-02	-4.55E-0
Contribution to hazardous waste disposed	kg	6.20E+01	6.07E+01	0*	0*	3.14E-01	1.01E+00	-1.03E+0
Contribution to non hazardous waste disposed	kg	7.13E+00	4.37E+00	0*	3.59E-01	2.03E+00	3.78E-01	-3.39E+0
contribution to radioactive waste disposed	kg	5.20E-03	4.22E-03	5.85E-05	4.81E-05	8.51E-04	1.88E-05	-1.47E-0
ontribution to components for reuse	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+0
contribution to materials for recycling	kg	6.35E-01	0*	0*	6.06E-02	0*	5.74E-01	0.00E+0
ontribution to materials for energy recovery	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+0
ontribution to exported energy	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+0
contribution to biogenic carbon content of the product	kg de C	0.00E+00	0*	0*	0*	0*	0*	0.00E+0
Contribution to biogenic carbon content of the associated ackaging	kg de C	0.00E+00	0*	0*	0*	0*	0*	0.00E+0

раскадing * represents less than 0.01% of the total life cycle of the reference flow

Life cycle assessment performed with EIME version v5.9.4, database version 2022-01 in compliance with ISO14044.

Detailed results, including all the optional indicators mentioned in PCRed4, and the split of the Use Phase (B1 to B7), are available in the LCA report and on demand in a digital format - Country Customer Care Center - http://www.schneider-electric.com/contact

According to this environmental analysis, proportionality rules may be used to evaluate the impacts of other products of this range, ratios to apply can be provided upon request

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Registration number :	ENVPEP060901EN_V5	Drafting rules	PEP-PCR-ed4-2021 09 06				
Verifier accreditation N°		Supplemented by	PSR-0005-ed2-2016 03 29				
Date of issue	2023/09/07	Information and reference documents	www.pep-ecopassport.org				
		Validity period	5 years				
Independent verification of the declaration and data, in compliance with ISO 14021 : 2016							
The PCR review was conducted by a panel of experts chaired by Julie ORGELET (Ddemain)							
PEP are compliant with XP C08-100-1 :2016 or EN 50693:2019							
The elements of the present PEP cannot be compared with elements from another program.							
Document in compliance with ISO 14021 : 2016 « Environmental labels and declarations. Type II environmental declarations »							

Schneider Electric Industries SAS
Country Customer Care Center
http://www.schneider-electric.com/contact
35, rue Joseph Monier
CS 30323
F- 92500 Rueil Malmaison Cedex
RCS Nanterre 954 503 439
Capital social 896 313 776 €

www.se.com

Published by Schneider Electric

2023/09/07

ENVPEP060901EN_V5 ©2023 - Schneider Electric – All rights reserved