INSTRUKCJA **obsługi**

SMART EMS

WSTĘP

System Smart EMS służy do zarządzania bilansem energetycznym w obiekcie. Działanie systemu opiera się na stałej kontroli przepływu energii pomiędzy zarządzana instalacją a siecią operatora. System umożliwia zautomatyzowaną redukcję nadwyżek wyprodukowanej energii elektrycznej poprzez inteligentną, realizowaną według modyfikowalnych scenariuszy, autokonsumpcję. Taka funkcjonalność wpisuje się w program priorytetowy Mój Prąd w zakresie systemu zarządzania energią HEMS/EMS.

MONTAŻ OBUDOWY

Obudowa urządzenia jest przeznaczona do montażu natynkowego i zapewnia stopień ochrony IP65 chroniąc komponenty zamontowane wewnątrz. Do montażu należy otworzyć rozdzielnicę, następnie przymocować ją do ściany poprzez przykręcenie jej za pomocą śrub, wykorzystując do tego celu kołki rozporowe umieszczone w ścianie.

Rys. 1. Wymiary obudowy

	Α	В	С	D	E	F
Obudowa 24T	384 mm	319 mm	144 mm	125 mm	210 mm	255 mm

Tab. 1. Wymiary obudowy

emiter@emiter.net.pl www.emiter.net.pl

SMART EMS

obsługi

Liczba rzędów	2
Materiał obudowy	Plastikowy
Możliwość rozbudowy	Nie
Wykonanie pokrywy	Zamknięte
Z zamkiem	Nie
Sposób montażu	Montaż natynkowy
Głębokość wbudowania	0
Stopień ochrony (IP)	65

Tab. 2. Parametry obudowy

OPIS OGÓLNY SYSTEMU

System Smart EMS składa się z zarządzającej jednostki centralnej wraz z zabezpieczeniami oraz dwukierunkowego licznika energii elektrycznej. Producent rekomenduje licznik EASTRON SDM72D-M umożliwiający komunikację przy użyciu protokołu ModBus i interfejsu RS-485. Możliwe jest również zastosowanie innych liczników dwukierunkowych realizujących komunikację opisaną powyżej.

System dostarczany jest w postaci rozdzielni natynkowej PST 24T z opisanymi przejściami kablowymi bez licznika energii. Dwukierunkowy licznik energii elektrycznej należy nabyć osobno lub przyłączyć system Smart EMS do istniejącego w instalacji (współpracującego) licznika.

MONTAŻ SYSTEMU

System Smart EMS można zamontować w dowolnym miejscu instalacji elektrycznej obiektu (budynku). Należy jednak zwrócić uwagę na wartości zabezpieczeń nadprądowych obwodów do których przyłączany jest system. Zabezpieczenia poprzedzające system nie mogą być mniejsze jak pobierany prąd sterowanych obwodów.

W celu prawidłowego działania systemu dwukierunkowy licznik energii elektrycznej należy zamontować w tablicy budynkowej na wejściu zasilania od operatora za głównym zabezpieczeniem tablicy. Licznik należy połączyć (skomunikować) z systemem Smart EMS za pomocą magistrali RS485. Do podłączenia zalecamy wykorzystać skrętkę komputerową zakończoną obustronnie rezystorami terminującymi 120Ω. Komunikacja pomiędzy licznikiem i systemem odbywa się przy pomocy protokołu Modbus. Układ wymaga trójfazowego zasilania, a minimalny przekrój przyłączonych przewodów wynosi 2,5 mm².

Rys. 2. Blok zaciskowy złącza zasilania układu

Emiter Sp. z o. o.

www.emiter.net.pl

(emiternet

40-241 Katowice

obsługi

Zarządzane przez system Smart EMS obwody (np. grzałki) należy przyłączyć przy użyciu kabla o minimalnym przekroju 2,5mm2. Bezwzględnie zakazuje się wymiany zabezpieczeń nadprądowych systemu na zabezpieczenia o większej wartości prądu. Zmiana taka może spowodować uszkodzenie systemu i skutkować będzie utratą gwarancji. Maksymalny prąd obciążenia wyjść nie może przekroczyć 16A dla obwodów P1-P4 oraz 10A dla obwodu P0. Obwody P1-P4 są obwodami zasilającymi urządzenia, zaś PO pełni rolę łącznika.

Rys. 3. Blok zaciskowy obwodów sterowania PO-P4

Obwody o większym prądzie obciążenia należy podłączyć do systemu przez dodatkowe styczniki o wymaganych parametrach. Kolejność faz włączonych do dwukierunkowego licznika energii elektrycznej musi odpowiadać kolejności faz na wejściu do systemu Smart EMS. Tylko taka korelacja faz pozwoli na prawidłowe działanie systemu, a w szczególności precyzyjne zarządzanie energią na poszczególnych fazach.

Rys. 4. Schemat podłączenia licznika dwukierunkowego

Emiter Sp. z o. o.

(emiternet

ul. Porcelanowa 27 tel. +48 32 730 34 00 40-241 Katowice

obsługi

Czujniki temperatury 1-Wire oraz magistralę ModBUS należy podłączyć do złączy push-in zgodnie z oznaczeniami.

Rys. 5. Połączenie 1-Wire i ModBUS

KONFIGURACJA SYSTEMU

1) Konfiguracja sieciowa

W celu skonfigurowania systemu Smart EMS należy połączyć go kablem Ethernet do lokalnej sieci komputerowej (switch, router). System posiada skonfigurowany domyślny adres IP: 192.168.0.100. W celu zalogowania się do systemu należy w przeglądarce internetowej wprowadzić adres:

http://192.168.0.100

Domyślne dane logowania administratora systemu:

Login: admin Hasło: admin

W pierwszej kolejności należy przejść do zakładki "Sieć" w sekcji "Ustawienia i zarządzanie" (1) i zaktualizować ustawienia sieciowe (2). W przypadku automatycznego przydzielania adresów w sieci LAN należy zaznaczyć opcję "Włącz DHCP". Zatwierdzenie zmian spowoduje ponowne uruchomienie systemu. Po ponownym uruchomieniu należy zalogować się uwzględniając nowe ustawienia (adres IP). W przypadku automatycznego przydzielania adresu należy wyszukać system w sieci lokalnej przy pomocy programu LKTools lub innego narzędzia do wyszukiwania urządzeń w sieci. Program LKTools dostępny jest na platformie B2B firmy Emiter.

Emiter Sp. z o. o.

emiter@emiter.net.p www.emiter.net.pl

obsługi

LK3 SW 1.49d HW 3.8	Dowiedz się więcej - Sieć 🔰	
Status	Adra	
Status	Adre	
Status użytkownika	Nazwa	/a hosta
Wyjścia		
Wyjścia		
PWM i PID	A	Adres IP
Wejścia i czujniki	Brama do	umvélna
Wejścia		
Czujniki I2C i 1Wire	Maska p	podsieci
Port szeregowy	Padataway	
Modbus	Poustawow	wy DNS
Moc i energia	Pomocnicz	zy DNS
Automatyzacja		
Zdarzenia	Por	80
Scheduler		
Watchdog		Zapisz i uruchom ponownie
Zdalne sterowanie		
Ustawienia i zarządzanie		
Sieć	11	
Czas	-	
Dostęp		

Rys.6. Konfiguracja sieci

🔛 LKTools File Help				×
	Find Lan	Controllers		Firmware
IP address 192.168.6.19	Name	MAC address E8-EB-1B-16-ED-29	Version HW 3.8 SW 1.49d	Choose a local file Get the latest firmware
Aktua Open webpage in	na browser	dres I Use the IP addres	IP address	

Rys. 7. Wyszukanie aktualnego adresu IP urządzenia w programie LKTools

emiter@emiter.net.pl

() emiternet

Konfiguracja czasu.

Dla prawidłowej pracy systemu niezbędne jest ustawienie aktualnej daty i godziny. Wszystkie zależności czasowe wykonują zadania w oparciu o te ustawienia.

W celu ustawienia aktualnej daty i godziny należy przejść do zakładki "Czas" w sekcji "Ustawienia i zarządzanie". Czas można ustawić ręcznie lub poprzez serwer NTP. Zaleca się wykorzystanie domyślnego (ustawionego) serwera NTP. Do prawidłowej pracy serwera NTP system Smart EMS musi mieć zestawione połączenie z Internetem.

2) Konfiguracja czujników temperatury.

Czujniki temperatury zostały skonfigurowane przez producenta w ilości odpowiedniej do wersji systemu. Dodanie lub wymiana czujnika wymaga dokonania odpowiedniej konfiguracji systemu.

W celu konfiguracji czujników temperatury należy przejść do zakładki "Czujniki I2C i 1Wire" w sekcji "Wejścia i czujniki" (1). Po prawidłowym podłączeniu czujnika do złącza należy odczytać jego identyfikator poprzez naciśnięcie przycisku "Odczytaj identyfikator podłączonego DS" (2). Aby odczytać identyfikator kolejnego czujnika podłączonego do systemu należy ponownie nacisnąć przycisk "Odczytaj identyfikator podłaczonego DS". Czynność ta należy wykonywać do momentu wyświetlenia identyfikatora czujnika, który chcemy dodać do systemu. Następnie należy określić na jakiej pozycji zostanie dodany czujnik. Wyboru należy dokonać wpisując w pole "Pozycja DS" (3) odpowiednią liczbę. Po dokonaniu wyboru należy nacisnąć przycisk "Zapisz identyfikator na pozycji". Identyfikator czujnika pojawi się na wybranej pozycji DS1 – DS8 (4).

LK3 SW 1.49d HW 3.8	Dowiedz się więce	ej - Czujniki I2C i 1Wire 🔰		Wsparcie ?	Ustawien
Status Status Status użytkownika	Czujniki 1W Identyfikator 28:4:79:CE:40	fire DS 1:21:6:99	2 Odczytaj identyfikator podłączonego DS	Czujniki I2C Częstotliwość I2C	kHz
Wyjścia Wyjścia PWM i PID	Pozycja DS 4	3	Zapisz identyfikator na pozycji	Czujnik podstawowy	~
Wejścia i czujniki Wejścia	1 DS1	28:4:79:CE:40:21:6:99	Zresetuj identyfikator 👕	SPS30 (Czujnik dodatkowy)	
Czujniki I2C i 1Wire Port szeregowy	DS2	28:93:94:A5:D:0:0:66	Zresetuj identyfikator 👕	Zahisz	
Modbus	DS3	0:0:0:0:0:0:0:0	Zresetuj identyfikator 👕		
Automatyzacja	DS4	28:D2:B0:A5:D:0:0:C3	Zresetuj identyfikator 👕		
Zdarzenia Scheduler	DS5	0:0:0:0:0:0:0:0	Zresetuj identyfikator 👕		
Watchdog	DS6	0:0:0:0:0:0:0:0	Zresetuj identyfikator 👕		
Zdalne sterowanie Łączność	DS7	0:0:0:0:0:0:0:0	Zresetuj identyfikator 👕		
Klient HTTP Klient MQTT	DS8	0:0:0:0:0:0:0:0	Zresetuj identyfikator 👕		

Rys. 8. Konfiguracja czujników temperatury

ul. Porcelanowa 27 tel. +48 32 730 34 00 40-241 Katowice

3) Konfiguracja licznika energii

System Smart EMS posiada domyślnie skonfigurowany dwukierunkowy licznik energii EASTRON SDM72D-M. Instalator systemu może jednak skonfigurować dowolny dwukierunkowy licznik energii umożliwiający komunikację poprzez interfejs RS-485 i protokół Modbus RTU. Producent przetestował również i gwarantuje prawidłową pracę licznika CHINT DTSU666.

Konfigurację licznika energii elektrycznej przeprowadza się w zakładce "Modbus" w sekcji "Wejścia i czujniki" (1). Do dyspozycji instalatora (konfiguracji) pozostają trzy moduły. W pierwszej kolejności należy wybrać z listy rozwijalnej "Moduł" predefiniowany licznik lub w celu zdefiniowania własnego wybrać opcję "custom" (2). Dalej należy wpisać adres licznika w polu "Slave ID" (3). Adres licznika został zdefiniowany przez producenta i może być również zmieniony przez instalatora. Domyślny adres dla liczników energii EASTRON i CHINT to "1". W przypadku wyboru predefiniowanego w systemie licznika EASTRON SDM72D-M poniżej pojawi się tabela zawierająca zdefiniowane parametry licznika oraz aktualnie odczytane wartości i jednostki (4).

W przypadku wyboru opcji "custom" należy skonfigurować ręcznie podłączony moduł (licznik) poprzez naciśniecie przycisku "Skonfiguruj moduł niestandardowy" (5). W celu wykorzystania odczytanych wartości rejestrów Modbus (wartości pomiarowych z licznika) należy przyporządkować je do odpowiednich zmiennych. Czynność tą należy wykonać poprzez naciśnięcie przycisku "Skonfiguruj mapowanie" (6).

LK3 SW 1.49d HW 3.8	Dowiedz się więcej - Modbus 🔰								
Status	Modbus Sensor RTU (RS4)	85)	2		Moduł			Moduł	
Status użytkownika Wviścia	SDM72D-M	SDM72D-M				SDM72D-M 🗸			
Wyjścia	Slave ID		-		Slave ID			Slave ID	
PWM i PID	1		3		1			1	
Wejścia i czujniki	Skonfiguruj mapowanie				Skonfiguruj mapowanie			Skonfiguruj mapowanie	
Wejścia		Δ							
Czujniki I2C i 1Wire	Weiście	Wartość	lednostka		Weiście	Wartość	Jednostka		
Port szeregowy Modbus	Total system power	0.00	W		Total system power	0.00	W		
Moc i energia	Import Energy since last reset	0.00	kWh		Import Energy since last reset	0.00	kWh		
Automatyzacja	Export Energy since last reset	0.00	kWh		Export Energy since last reset	0.00	kWh		
Zdarzenia	Total Energy	0.00	kWh		Total Energy	0.00	kWh		
Scheduler	Settable total Energy	0.00	kWh		Settable total Energy	0.00	kWh		
Zdalne sterowanie	Settable import Energy	0.00	kWh		Settable import Energy	0.00	kWh		
Łączność	Settable export Energy	0.00	kWh		Settable export Energy	0.00	kWh		
Klient HTTP	Import power	0.00	w		Import power	0.00	w		
Klient MQTT	Export power	0.00	w		Export power	0.00	w		

Rys. 9. Konfiguracja licznika

Po naciśnięciu przycisku "Skonfiguruj mapowanie" pojawi się tabela, która pozwala na przypisanie do odpowiedniego parametru odczytanego z licznika (1) przypisać zmienną poprzez wybranie z listy rozwijalnej (2). Przypisane już zmienne posiadają indeks zawarty w nawiasie. Nazwy zmiennych są zdefiniowane w systemie jako m1 – m30. W celu zatwierdzenia przypisania zmiennych należy nacisnąć przycisk "Zapisz zmiany".

#	Nazwa	Mapowanie Auto select	2
1	Total system power	m1 (1,1)	
2	Import Energy since last reset	m8 (1,2)	15
3	Export Energy since last reset	m9 (1,3)	
4	Total Energy	m7 (1,4)	
5	Settable total Energy	m10 (1,5)	
5	Settable import Energy	m11 (1,6)	
7	Settable export Energy	m12 (1,7)	
3	Import power	m2 (1,8)	
)	Export power	m3 (1,9)	

Rys. 10. Mapowanie parametrów

W celu prawidłowego zdefiniowania innego licznika (opcja "custom") należy dodatkowo go skonfigurować. Konfigurację wykonujemy poprzez naciśnięcie przycisku "Skonfiguruj moduł niestandardowy". W otwartym oknie należy uzupełnić nazwę modułu (1), parametry transmisji (Bitrate, Bit parzystości, Bit stopu) (2), opóźnienie między odczytami rejestrów liczone w sekundach (3) oraz zdefiniować odczyty żądanych rejestrów (4). Kolejne konfiguracje rejestrów należy dodać poprzez naciśniecie przycisku "Dodaj element" (5). Następnie należy wpisać odpowiednie parametry w celu odczytu żądanej wartości z rejestru. Mapy rejestrów wraz parametrami transmisji należy uzyskać u producenta sprzętu (licznika). Stworzoną konfigurację można wyeksportować do pliku (6) w celu np. szybkiego przywrócenia po resecie systemu lub do wykorzystania u innego klienta. Ukończona konfigurację należy zapisać (7) i jak w predefiniowanym liczniku - skonfigurować mapowanie zmiennych.

az	va							
SD	M630 (1)							
itra	te							
9	600							
it p	arzystości	(2)						
0		The second se						
it s	topu							
1								
)pó	źnienie między odczytami	rejestrów						
)pó 1	źnienie między odczytami	rejestrów 3						
1	źnienie między odczytami Opcje prezentacji	rejestrów 3	(4)	Opcje sprzętowe	2			
pó 1	źnienie między odczytami Opcje prezentacji Nazwa	rejestrów 3 Jednostka	(4) Dzielnik	Opcje sprzętowe Adres	2	Kod funkcji	Rodzaj	
pó 1 #	źnienie między odczytami Opcje prezentacji Nazwa L1 - N	rejestrów 3 Jednostka V	4 Dzielnik 100 ~	Opcje sprzętowe Adres	0	Kod funkcji 0x4 ~	Rodzaj float	~
pó 1 #	źnienie między odczytami Opcje prezentacji Nazwa L1 - N L2 - N	rejestrów 3 Jednostka V V	Øzielnik 100 ~ 100 ~	Opcje sprzętowe Adres 0 2	0	Kod funkcji 0x4 0x4	Rodzaj float float	~
1 1 1 2 3	źnienie między odczytami Opcje prezentacji Nazwa 11 - N 12 - N 13 - N	rejestrów 3 Jednostka V V V V	Ozielnik 100 v 100 v 100 v	Opcje sprzętowe Adres 0 2 4	9 0 0 0	Kod funkcji 0x4 ~ 0x4 ~ 0x4 ~	Rodzaj float float	· .
1 1 2 3	nienie między odczytami Opcje prezentacji Nazwa L1 - N L2 - N L3 - N	rejestrów 3 Jednostka V V V V V V	Ø Dzielnik 100 ~ 100 ~ 100 ~ 100 ~ Dodaj element	Opcje sprzętowe Adres 0 2 4	0	Kod funkcji 0x4 ~ 0x4 ~ 0x4 ~ 0x4 ~	Rodzaj float float float	~

Rys. 11. Konfiguracja modułu niestandardowego

() emiternet

4) Konfiguracja wyjść

Wyjścia systemu Smart EMS zostały skonfigurowane przez producenta odpowiednio do wersji. Zaleca się jedynie konfigurację własnych nazw wyjść (1). Zdefiniowane nazwy widoczne są w zakładce "Status" i "Status użytkownika" (2). Wyjścia posiadają jednak zdefiniowane w systemie identyfikatory: out0 – out5 oraz w zakładce "PWM i PID": pwm0-pwm3. W zakładkach tych można przetestować działanie wyjść poprzez naciśnięcie przycisku pod nazwą wybranego wyjścia (3).

LK3 SW 1.49d HW 3.8	Dowiedz się więcej - Wyjścia 💷		
Status			
Status 7	Pompa ciepła	Grzałka 1	Grzałka 2
Status użytkownika	OFF	OFF	OFF
Wyjścia			
Wyjścia	Stan odwrócony		
PWM i PID	Zablokuj stan wviść		
Wejścia i czujniki			
Wejścia	Czas powrotu		
Czujniki I2C i 1Wire	0	0	0
Port szeregowy			
Modbus	l		
Moc i energia	Okresowe przełączanie		
Automatyzacja	🗌 Włączone	Włączone	🗌 Włączone

Rys. 12. Przypisanie nazw sterowanych wyjść PO – P4

5) Konfiguracja statusu urządzenia

W zakładce "Status" można skonfigurować widoczne w interfejsie użytkownika parametry systemu odczytane z urządzenia. Istnieje możliwość dostosowania zakresu wyświetlanych danych do własnych potrzeb poprzez naciśnięcie przycisku "Skonfiguruj widoczność elementów" (1). Ustawiony w tym miejscu zakres danych widoczny będzie dla użytkownika systemu. System Smart EMS posiada skonfigurowany przez producenta zakres prezentowanych danych zależny od wersji urządzenia.

	Dowiedz się więcej - Status 🚺									ie ? Usta
Status	Uptime 16 sec, 3 min, 17 hour, 0 day	Czas 2022	07-06 10:09:45	SW 1.49d HW 3.8		VCC = 51.88 V	Temper	atura = 43 °C	 Skonfiguruj widoczność e 	lementów
									0	
	Wyjścia								U	
	Pompa ciepła Grzałka 1		Grzałka 2			Grzałka 3	Grzałka 4			
	OFF	0	FF	OFF		OFF	o	FF		
		-					-			
Wejścia i czujniki										
	Czujniki temperatury									
	DS1 T cwu									
	22.3 *C									
Automatyzacja	Modbus									
	Total system power (m1)	1	import power (m.	2)		Export power (m3)		L1 - N (m4)		
	0.00	W	0.00	V	V	0.00	W	228.53		V
	L2 - N (m5)		L3 - N (m6)			Total Energy (m7)		Import Energy s	ince last reset (m8)	
	241.54	v	242.32	1	1	0.29	kWh	0.21		kWh
	Export Energy since last reset (m9)									
	0.08	kWh								

Rys. 13. Personalizacja wyświetlanych danych

(
emiternet

6) Konfiguracja statusu użytkownika

W zakładce "Status użytkownika" (1) istnieje możliwość konfiguracji widoku interfejsu graficznego systemu dla zwykłego użytkownika. System Smart EMS posiada skonfigurowany interfejs w zależności od wersji urządzenia. Modyfikacja interfejsu możliwa jest jedynie po jego odblokowaniu przez instalatora. Czynność tą wykonuje się poprzez naciśnięcie przycisku "Odblokuj układ" (2). Po odblokowaniu układu nazwa przycisku zmieni się na "Zablokuj układ" i można dowolnie rozmieszczać prezentowane elementy systemu. Zakres możliwych do prezentacji danych może zostać określony przez instalatora w zakładce "Status". Po wykonaniu edycji interfejsu należy go zapisać (3) oraz zablokować (2).

LK3 SW 1.49d HW 3.8	Dowiedz się wi	ęcej - Statı	ıs użytkownik	a 🔰								
Status		Zablokui	układ		Zrosotuj ukł	ad	Zanie		Zarzadzaj obr	270m		
Status									82em			
Status użytkownika 📕	Pompa cie	epła	Grzałka 1		Grzałka 2		Grzałka 3	Grzałka 4		DS1	T cwu	
Wyjścia	OF	F	OFF		OFF		OFF	OFF		23.8	23.8 °C	
Wyjścia								A				
PWM i PID	Tatal aut		Eventer							DS2	T2	
Wejścia i czujniki		em po	export po	wer (21.9		°C
Wejścia	0.00	W	0.00	W								
Czujniki I2C i 1Wire	Export Ene	ergy si	Import En	ergy s	Import powe	er (DS3	Т3	
Port szeregowy	0.00	kWh	0.00	kWh	0.00	W				23.7		°C
Modbus												
Moc i energia	Total Energ	gy (m7)										
Automatyzacja	0.00	kWh										
Zdarzenia												
Scheduler												
Watchdog												
Zdalne sterowanie												
Łączność												
Klient HTTP												
Klient MQTT												
SNMP												
Ustawienia i zarządzanie	L1 - N (m4)	L2 - N (m5)	L3 - N (m6)							
Sieć	0.00	V	0.00	V	0.00	V						
Czas												

7) Konfiguracja funkcji logicznych

Istotą systemu zarządzania energią (EMS) Smart EMS jest zautomatyzowana reakcja na przekroczenie zadanych progów eksportowanej energii elektrycznej do sieci operatora. Scenariusze reakcji systemu należy zrealizować w zakładce "Zdarzenia" w sekcji "Automatyzacja" (1). System pozwala na ustawienie odpowiedniej reakcji wyjścia wybieranego z listy "Działanie" (2) na zadany parametr wejściowy wybrany z listy rozwijalnej "Źródło" (3). Możliwe jest także łączenie warunków wejściowych za pomocą operatorów logicznych AND, OR, XOR, NOR, NAND (4).

LK3 SW 1.49d HW 3.8	Dowiedz się wię	ecej - Zdar	zenia 🔰							
Status Status	Jeśli 🔺	Źródło	m3 (Export power)	3	✓ Ope	erator > V	Wartość 20	000		Hister
Status użytkownika	Operator m	iędzy war	unkami AND 🗸	4						
Wyjścia Wyjścia	Jeśli 🖪	Źródło	DS1 (T cwu)		↓ Ope	rator < 🗸	Wartość 65	5		Hister
PWM i PID	Wtedy	ziałanie	OUTO (Pompa ciepła)	→ Wa	rtość 1	✓ Opóźi	nienie wyłącz	enia 1		
Wejścia i czujniki			1							
Wejścia	Dodaj		Ζ							
Czujniki I2C i 1Wire										
Port szeregowy	Operacia	logiczny								
Modbus	Operacje	logiczne			_			_		
Moc i energia	A	В	AND	A	В	OR	A	В	NOR	_
Automatyzacja	0	0	0	0	0	0	0	0	1	
Zdarzenia	0	1	0	0	1	1	0	1	0	
Scheduler	1	0	0	1	0	1	1	0	0	
Watchdog	1	1	1	1	1	1	1	1	0	

Rys. 15. Konfiguracja zdarzeń

7) Konfiguracja funkcji logicznych

Istotą systemu zarządzania energią (EMS) Smart EMS jest zautomatyzowana reakcja na przekroczenie zadanych progów eksportowanej energii elektrycznej do sieci operatora. Scenariusze reakcji systemu należy zrealizować w zakładce "Zdarzenia" w sekcji "Automatyzacja" (1). System pozwala na ustawienie odpowiedniej reakcji wyjścia wybieranego z listy "Działanie" (2) na zadany parametr wejściowy wybrany z listy rozwijalnej "Źródło" (3). Możliwe jest także łączenie warunków wejściowych za pomocą operatorów logicznych AND, OR, XOR, NOR, NAND (4).

#	Źródło	Operator	Wartość	Stan	Operator między warunkami	Działanie	Opóźnienie wyłączenia	
1	m4 (L1 - N)	≥	330 ±0	No	-	EVENT2 → 1	0	🗌 On 🗌 Per 📝 🧊
	m3 (Export power)	≥	2000 ±100	No	AND			
2	DS1 (T cwu)	<	65 ±3	Yes		OUTU (Pompa ciepła) 🔿 1	1	On 🖉 Per

Rys. 16. Konfiguracja zdarzeń

W przedstawionym przykładzie stworzono scenariusz uruchomienia Grzałki 1 na wyjściu OUTI - jeżeli zostaną łącznie spełnione dwa warunki (8):

- moc chwilowa oddawana do sieci operatora przekroczy 2kW z histerezą 100W,

- temperatura w zbiorniku cwu będzie niższa niż 65°C z histerezą 3°C.

Opóźnienie wyłączenia scenariusza nastąpi ze stałą czasową wynoszącą 60 sek.

obsługi

Scenariusz włączono zaznaczając opcję "On" oraz ma ono charakter permanentny dzięki zaznaczeniu opcji "Per". W analogiczny sposób można utworzyć scenariusze dla pozostałych grzałek lub innych urządzeń przyłączonych do systemu. W taki sposób można również włączać lub wyłączać urządzenia np. poprzeć złącze (przełącznik) OUTO (pompa ciepła, ładowarka samochodowa, klimatyzacja itp.). System daje możliwość ustawiania stanów wirtualnych wyjść EVENTI-EVENT8 np. w celu zastosowania bardziej rozbudowanych zależności logicznych pomiędzy wejściami (źródłami).

Tworząc zależności związane z zarządzaniem napięciem i/lub energią na poszczególnych fazach (np. włączanie obciążenia na fazie, na której następuje przekroczenie granicznej wartości napięcia) należy sprawdzić odpowiednie podłączenie licznika dwukierunkowego i systemu. Kolejność faz podłączonych do licznika energii musi być analogiczna do kolejności faz w systemie Smart EMS.

Rys. 17. Podział odbiorów sterowanych na poszczególne fazy

8) Konfiguracja Klienta MQTT

W celu realizacji prezentacji danych i ewentualnego zdalnego serowania wyjściami system Smart EMS umożliwia wymianę danych z serwerem MQTT.

W celu wymiany danych należy założyć konto na serwerze http://mqtt.ats.pl. Procedura zakładania konta opisana została w pkt. 6 niniejszej instrukcji. Konfiguracja klienta MQTT znajduje się w zakładce "Klient MQTT" w sekcji "Łączność" (1). Następnie należy zaznaczyć opcje "Włącz MQTT" (2) oraz "Włącz uwierzytelnianie (login/hasło) (3).

Prawidłowe połączenie z serwerem MQTT wymaga uzupełnienia formularza (4). W pole "Hasło" należy wpisać hasło z sekcji "Szczegóły klienta MQTT" w ustawieniach konta stworzonego na portalu http://mqtt.ats.pl. Następnie należy zaznaczyć odpowiednie dane, które mają być wysyłane do serwera MQTT (5). W celu zrealizowania komunikacji należy zapisać utworzona konfigurację poprzez naciśnięcie przycisku "Zapisz" (6).

www.emiter.net.pl

obsługi

Rys. 18. Ustawienia łączności klienta MQTT

KONFIGURACJA SERWERA MQTT

W celu prezentacji danych z systemu Smart EMS w aplikacji mobilnej oraz na serwerze MQTT należy utworzyć konto na portalu http://mgtt.ats.pl.

Po utworzeniu konta w menu "Urządzenia" (1) należy dodać nowe urządzenie naciskając "+Dodaj urządzenie" (2) oraz wypełniając formularz (3). W celu zatwierdzenia zmian należy nacisnąć umieszczony pod formularzem przycisk (4).

Emiter Sp. z o. o.

emiter@emiter.net.pl

(1) emiternet

ul. Porcelanowa 27 tel. +48 32 730 34 00

Dodane do portalu urządzenie pojawi się na liście. Zostanie mu również przydzielony automatycznie prefix tematów (1). Prefiks należy wpisać w odpowiednie miejsce formularza konfiguracyjnego systemu (por. pkt 5 ppkt 9).

Urządzenia Grupy serii	Reakcje i zadania Klient MQTT			Docs Kontakt Konto
Urządzenie zostało pomyślnie dod	ane.			
	🗄 Lista urządzeń	+ Dodaj urządzenie		
Nazwa	Prefix	Edytuj	Wykres	Tabela
LK_KENO_1	(1) XXXXXX/XXX	🕑 Edytuj 🗸	📲 Wykres 💽	ii Tabela 🛛

Rys. 20. Lista urządzeń na platformie MQTT

W celu konfiguracji wyświetlanych danych na portalu http://mqtt.ats.pl należy nacisnąć przycisk "Edytuj" i wybrać z listy rozwijalnej "Ustawienia serii". W otwartym nowym oknie należy zaznaczyć (1) które dane z systemu Smart EMS mają być prezentowane na portalu. Nazwy wejść wyjść oznaczone są jako tematy z prefix'em (2). Niezależnie od nazw poszczególnych wejść/wyjść określonych w systemie Smart EMS portal umożliwia nadanie własnych nazw dla poszczególnych tematów (3). Można również wybrać odpowiedni kolor do reprezentacji danych na wykresie (4). W celu zatwierdzenia zmian na leży nacisnąć przycisk "Zapisz ustawienia serii" znajdujący się pod tabelą, na dole strony.

m Urządzenia Gru	ıpy serii Re	akcje i zadania Klient MQTT		Docs Kontakt Konto
Urządzenie LK3_Keno				
Zmiana nazwy	Aktywne	Temat	Nazwa	Kolor
Szybka Konfiguracja		df5ae5/46f/inpa1	INPA1	
Ustawienia serii		df5ae5/46f/inpa2	INPA2	
Ustawienia wykresu		df5ae5/46f/inpa3	INPA3	
		df5ae5/46f/inpa4	INPA4	
Zarządzaj danymi		df5ae5/46f/inpa5	INPA5	
	1 •	df5ae5/46f/ds1 2	Тсwu 3	
		df5ae5/46f/ds2	DS2	

Rys. 21. Konfiguracja wyświetlanych danych

emiter@emiter.net.p www.emiter.net.pl

Dla prawidłowego logowania systemu Smart EMS do portalu należy odczytać hasło niezbędne do wpisania w ustawieniach systemu. W tym celu wybieramy z listy rozwijalnej "Konto" (1) opcję "Ustawienia konta" (2) i odczytujemy nadane na portalu hasła (3). Hasło to nie jest tożsame z hasłem logowania do portalu http://mqtt.ats.pl.

Urządzenia Gru	py serii Reakcje i zadania Klient MQTT		Docs	Kontakt 1 Konto -		
Ogólne informacje	O użytkowniku		2	L Keno Ustawienia konta		
Zarządzaj e-mailami	Nazwa użytkownika:	Keno	Wyloguj się			
Zmień hasło	Email:	smart.serwis@keno-energy.com				
Ustaw strefę	Szczegóły klienta MQTT					
czasową	Nazwa hosta:	mqtt.ats.pl				
	Port dla urządzeń:	1883				
	Nazwa użytkownika:	Keno				
	Hasio:	XXXXXXXXXX				
	Prefix tematów:	df5ae5				
	Stan i limity konta					
	Status:	Aktywne				
	Limit urządzeń:	5				
	Limit grup serii:	10				
	Limit usług:	10				
	Limit reakcji:	10				
	Limit zadań:	10				
]		

Po wykonaniu opisanej wyżej podstawowej konfiguracji możliwa będzie prezentacja danych na wykresie w portalu http://mqtt.ats.pl. W menu "Urządzenia" naciskamy przycisk "Wykres" po czym otwarte zostaje okno z wszystkimi zaznaczonymi do wyświetlenia parametrami (tematami).

Wykres można ograniczyć do mniejszej ilości danych poprzez kliknięcie myszką w ich symbole (1). Dane reprezentowane przez przekreślony symbol nie będą wyświetlane na wykresie. Zakres czasowy prezentowanych wartości można regulować przy pomocy suwaka (2). Istnieje również możliwość pobrania wykresu na dysk lokalny. W tym celu należy z menu "Akcje" (3) wybrać opcje "Eksportuj dane jako PNG". Można również zmieniać zakres prezentowanych danych do predefiniowanych wartości (4) oraz zmieniać ustawienia wykresu w zakresie etykiet i wartości granicznych osi Y (5).

obsługi

Rys. 23. Prezentacja danych na wykresie

Portal umożliwia znacznie szersze wykorzystanie niż opisane w niniejszej instrukcji podstawowe ustawienia. Pełne informacje na temat możliwości portalu znajdują się na stronie pomocy dostępnej po wybraniu opcji "Docs" w głównym menu portalu.

Emiter Sp. z o. o.

emiter@emiter.net.pl www.emiter.net.pl

System Smart EMS umożliwia również dostęp do danych poprzez aplikację mobilną ATS MQTT Client. Aplikacja dostępna jest na systemy Android oraz IOS. Do aplikacji należy zalogować się przy użyciu loginu i hasła do portalu internetowego http://mqtt.ats.pl.

Aplikacja umożliwia podgląd danych (tematów) skonfigurowanych na portalu oraz sterowanie wyjściami.

Rys. 24. Aplikacja mobilna ATS MQTT

